General Wahlquist metrics in all dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axisymmetric metrics in arbitrary dimensions

We consider axially symmetric static metrics in arbitrary dimension, both with and without a cosmological constant. The most obvious such solutions have an SO(n) group of Killing vectors representing the axial symmetry, although one can also consider abelian groups which represent a flat ‘internal space’. We relate such metrics to lower dimensional dilatonic cosmological metrics with a Liouvill...

متن کامل

The Wahlquist-Newman solution

Based on a geometrical property which holds both for the Kerr metric and for the Wahlquist metric we argue that the Kerr metric is a vacuum subcase of the Wahlquist perfect-fluid solution. The Kerr-Newman metric is a physically preferred charged generalization of the Kerr metric. We discuss which geometric property makes this metric so special and claim that a charged generalization of the Wahl...

متن کامل

eGFRD in all dimensions

Biochemical reactions typically occur at low copy numbers, but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. However, while particle-based mod...

متن کامل

Parameter determination in a parabolic inverse problem in general dimensions

It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...

متن کامل

Entanglement entropy in all dimensions

It has long been conjectured that the entropy of quantum fields across boundaries scales as the boundary area. This conjecture has not been easy to test in spacetime dimensions greater than four because of divergences in the von Neumann entropy. Here we show that the Rényi entropy provides a convergent alternative, yielding a quantitative measure of entanglement between quantum field theoretic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2014

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.90.024037